Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335126

RESUMO

The function of the smooth muscle cells lining the walls of mammalian systemic arteries and arterioles is to regulate the diameter of the vessels to control blood flow and blood pressure. Here, we describe an in silico model, which we call the 'Hernandez-Hernandez model', of electrical and Ca2+ signaling in arterial myocytes based on new experimental data indicating sex-specific differences in male and female arterial myocytes from murine resistance arteries. The model suggests the fundamental ionic mechanisms underlying membrane potential and intracellular Ca2+ signaling during the development of myogenic tone in arterial blood vessels. Although experimental data suggest that KV1.5 channel currents have similar amplitudes, kinetics, and voltage dependencies in male and female myocytes, simulations suggest that the KV1.5 current is the dominant current regulating membrane potential in male myocytes. In female cells, which have larger KV2.1 channel expression and longer time constants for activation than male myocytes, predictions from simulated female myocytes suggest that KV2.1 plays a primary role in the control of membrane potential. Over the physiological range of membrane potentials, the gating of a small number of voltage-gated K+ channels and L-type Ca2+ channels are predicted to drive sex-specific differences in intracellular Ca2+ and excitability. We also show that in an idealized computational model of a vessel, female arterial smooth muscle exhibits heightened sensitivity to commonly used Ca2+ channel blockers compared to male. In summary, we present a new model framework to investigate the potential sex-specific impact of antihypertensive drugs.


High blood pressure is a major risk factor for heart disease, which is one of the leading causes of death worldwide. While drugs are available to control blood pressure, male and female patients can respond differently to treatment. However, the biological mechanisms behind this sex difference are not fully understood. Blood pressure is controlled by cells lining the artery walls called smooth muscle cells which alter the width of blood vessels. On the surface of smooth muscle cells are potassium and calcium channels which control the cell's electrical activity. When calcium ions enter the cell via calcium channels, this generates an electrical signal that causes the smooth muscle to contract and narrow the blood vessel. Potassium ions then flood out of the cell via potassium channels to dampen the rise in electrical activity, causing the muscle to relax and widen the artery. There are various sub-types of potassium and calcium channels in smooth muscle cells. Here, Hernandez-Hernandez et al. set out to find how these channels differ between male and female mice, and whether these sex differences could alter the response to blood pressure medication. The team developed a computational model of a smooth muscle cell, incorporating data from laboratory experiments measuring differences in cells isolated from the arteries of male and female mice. The model predicted that the sub-types of potassium and calcium channels in smooth muscle cells varied between males and females, and how the channels impacted electrical activity also differed. For instance, the potassium channel Kv2.1 was found to have a greater role in controlling electrical activity in female mice, and this sex difference impacted blood vessel contraction. The model also predicted that female mice were more sensitive than males to calcium channel blockers, a drug commonly prescribed to treat high blood pressure. The findings by Hernandez-Hernandez et al. provide new insights into the biological mechanisms underlying sex differences in response to blood pressure medication. They also demonstrate how computational models can be used to predict the effects of drugs on different individuals. In the future, these predictions may help researchers to identify better, more personalized treatments for blood pressure.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Camundongos , Masculino , Feminino , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Artérias/metabolismo , Pressão Sanguínea , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
2.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37425682

RESUMO

The function of the smooth muscle cells lining the walls of mammalian systemic arteries and arterioles is to regulate the diameter of the vessels to control blood flow and blood pressure. Here, we describe an in-silico model, which we call the "Hernandez-Hernandez model", of electrical and Ca2+ signaling in arterial myocytes based on new experimental data indicating sex-specific differences in male and female arterial myocytes from murine resistance arteries. The model suggests the fundamental ionic mechanisms underlying membrane potential and intracellular Ca2+ signaling during the development of myogenic tone in arterial blood vessels. Although experimental data suggest that KV1.5 channel currents have similar amplitudes, kinetics, and voltage dependencies in male and female myocytes, simulations suggest that the KV1.5 current is the dominant current regulating membrane potential in male myocytes. In female cells, which have larger KV2.1 channel expression and longer time constants for activation than male myocytes, predictions from simulated female myocytes suggest that KV2.1 plays a primary role in the control of membrane potential. Over the physiological range of membrane potentials, the gating of a small number of voltage-gated K+ channels and L-type Ca2+ channels are predicted to drive sex-specific differences in intracellular Ca2+ and excitability. We also show that in an idealized computational model of a vessel, female arterial smooth muscle exhibits heightened sensitivity to commonly used Ca2+ channel blockers compared to male. In summary, we present a new model framework to investigate the potential sex-specific impact of anti-hypertensive drugs.

3.
J Physiol ; 601(17): 3789-3812, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37528537

RESUMO

Cardiac function is tightly regulated by the autonomic nervous system (ANS). Activation of the sympathetic nervous system increases cardiac output by increasing heart rate and stroke volume, while parasympathetic nerve stimulation instantly slows heart rate. Importantly, imbalance in autonomic control of the heart has been implicated in the development of arrhythmias and heart failure. Understanding of the mechanisms and effects of autonomic stimulation is a major challenge because synapses in different regions of the heart result in multiple changes to heart function. For example, nerve synapses on the sinoatrial node (SAN) impact pacemaking, while synapses on contractile cells alter contraction and arrhythmia vulnerability. Here, we present a multiscale neurocardiac modelling and simulator tool that predicts the effect of efferent stimulation of the sympathetic and parasympathetic branches of the ANS on the cardiac SAN and ventricular myocardium. The model includes a layered representation of the ANS and reproduces firing properties measured experimentally. Model parameters are derived from experiments and atomistic simulations. The model is a first prototype of a digital twin that is applied to make predictions across all system scales, from subcellular signalling to pacemaker frequency to tissue level responses. We predict conditions under which autonomic imbalance induces proarrhythmia and can be modified to prevent or inhibit arrhythmia. In summary, the multiscale model constitutes a predictive digital twin framework to test and guide high-throughput prediction of novel neuromodulatory therapy. KEY POINTS: A multi-layered model representation of the autonomic nervous system that includes sympathetic and parasympathetic branches, each with sparse random intralayer connectivity, synaptic dynamics and conductance based integrate-and-fire neurons generates firing patterns in close agreement with experiment. A key feature of the neurocardiac computational model is the connection between the autonomic nervous system and both pacemaker and contractile cells, where modification to pacemaker frequency drives initiation of electrical signals in the contractile cells. We utilized atomic-scale molecular dynamics simulations to predict the association and dissociation rates of noradrenaline with the ß-adrenergic receptor. Multiscale predictions demonstrate how autonomic imbalance may increase proclivity to arrhythmias or be used to terminate arrhythmias. The model serves as a first step towards a digital twin for predicting neuromodulation to prevent or reduce disease.


Assuntos
Sistema Nervoso Autônomo , Coração , Humanos , Sistema Nervoso Autônomo/fisiologia , Arritmias Cardíacas , Sistema Nervoso Parassimpático , Sistema Nervoso Simpático , Frequência Cardíaca/fisiologia , Nó Sinoatrial
4.
J Theor Biol ; 573: 111595, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37562674

RESUMO

A common side effect of pharmaceutical drugs is an increased propensity for cardiac arrhythmias. Many drugs bind to cardiac ion-channels in a state-specific manner, which alters the ionic conductances in complicated ways, making it difficult to identify the mechanisms underlying pro-arrhythmic drug effects. To better understand the fundamental mechanisms underlying the diverse effects of state-dependent sodium (Na+) channel blockers on cellular excitability, we consider two canonical motifs of drug-ion-channel interactions and compare the effects of Na+ channel blockers on the rate-dependence of peak upstroke velocity, conduction velocity, and vulnerable window size. In the literature, both motifs are referred to as "guarded receptor," but here we distinguish between state-specific binding that does not alter channel gating (referred to here as "guarded receptor") and state-specific binding that blocks certain gating transitions ("gate immobilization"). For each drug binding motif, we consider drugs that bind to the inactivated state and drugs that bind to the non-inactivated state of the Na+ channel. Exploiting the idealized nature of the canonical binding motifs, we identify the fundamental mechanisms underlying the effects on excitability of the various binding interactions. Specifically, we derive the voltage-dependence of the drug binding time constants and the equilibrium fractions of channels bound to drug, and we then derive a formula that incorporates these time constants and equilibrium fractions to elucidate the fundamental mechanisms. In the case of charged drug, we find that drugs that bind to inactivated channels exhibit greater rate-dependence than drugs that bind to non-inactivated channels. For neutral drugs, the effects of guarded receptor interactions are rate-independent, and we describe a novel mechanism for reverse rate-dependence resulting from neutral drug binding to non-inactivated channels via the gate immobilization motif.


Assuntos
Bloqueadores dos Canais de Sódio , Canais de Sódio , Humanos , Arritmias Cardíacas , Coração , Canais Iônicos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
5.
PLoS Comput Biol ; 17(6): e1009145, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185778

RESUMO

State-dependent sodium channel blockers are often prescribed to treat cardiac arrhythmias, but many sodium channel blockers are known to have pro-arrhythmic side effects. While the anti and proarrhythmic potential of a sodium channel blocker is thought to depend on the characteristics of its rate-dependent block, the mechanisms linking these two attributes are unclear. Furthermore, how specific properties of rate-dependent block arise from the binding kinetics of a particular drug is poorly understood. Here, we examine the rate-dependent effects of the sodium channel blocker lidocaine by constructing and analyzing a novel drug-channel interaction model. First, we identify the predominant mode of lidocaine binding in a 24 variable Markov model for lidocaine-sodium channel interaction by Moreno et al. Specifically, we find that (1) the vast majority of lidocaine bound to sodium channels is in the neutral form, i.e., the binding of charged lidocaine to sodium channels is negligible, and (2) neutral lidocaine binds almost exclusively to inactivated channels and, upon binding, immobilizes channels in the inactivated state. We then develop a novel 3-variable lidocaine-sodium channel interaction model that incorporates only the predominant mode of drug binding. Our low-dimensional model replicates an extensive amount of the voltage-clamp data used to parameterize the Moreno et al. model. Furthermore, the effects of lidocaine on action potential upstroke velocity and conduction velocity in our model are similar to those predicted by the Moreno et al. model. By exploiting the low-dimensionality of our model, we derive an algebraic expression for level of rate-dependent block as a function of pacing frequency, restitution properties, diastolic and plateau potentials, and drug binding rate constants. Our model predicts that the level of rate-dependent block is sensitive to alterations in restitution properties and increases in diastolic potential, but it is insensitive to variations in the shape of the action potential waveform and lidocaine binding rates.


Assuntos
Coração/efeitos dos fármacos , Lidocaína/farmacologia , Lidocaína/farmacocinética , Modelos Cardiovasculares , Miocárdio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/farmacocinética , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Biologia Computacional , Simulação por Computador , Frequência Cardíaca/fisiologia , Humanos , Cinética , Cadeias de Markov , Técnicas de Patch-Clamp , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
6.
J Theor Biol ; 519: 110619, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33740423

RESUMO

Dense innervation of the heart by the sympathetic nervous system (SNS) allows cardiac output to respond appropriately to the needs of the body under varying conditions, but occasionally the abrupt onset of SNS activity can trigger cardiac arrhythmias. Sympathetic activity leads to the release of norepinephrine (NE) onto cardiomyocytes, activating ß1-adrenergic receptors (ß1-ARs) and leading to the production of the second messenger cyclic AMP (cAMP). Upon sudden activation of ß1-ARs in experiments, intracellular cAMP can transiently rise to a high concentration before converging to a steady state level. Although changes to cellular cAMP concentration are important in modulating the overall cardiovascular response to sympathetic tone, the underlying mechanisms of the cAMP transients and the parameters that control their magnitude are unclear. We reduce a detailed computational model of the ß1-adrenergic signaling cascade to a system of two differential equations by eliminating extraneous variables and applying quasi-steady state approximation. The structure of the reduced model reveals that the large cAMP transients associated with abrupt ß1-AR activation are generated by the interplay of production/degradation of cAMP and desensitization/resensitization of ß1-ARs. The reduced model is used to predict how the dynamics of intracellular cAMP depend on the concentrations of norepinephrine (NE), phosphodiesterases 3 and 4 (PDE3,4), G-protein coupled receptor kinase 2 (GRK2), and ß1-AR, in healthy conditions and a simple model of early stages of heart failure. The key findings of the study are as follows: 1) Applying a reduced model of the dynamics of cardiac sympathetic signaling we show that the concentrations of two variables, cAMP and non-desensitized ß1-AR, capture the overall dynamics of sympathetic signaling; 2) The key factors influencing cAMP production are AC activity and PDE3,4 activity, while those that directly impact ß1-AR phosphorylation are GRK2 and PKA1. Thus, disease states that affect sympathetic control of the heart can be thoroughly assessed by studying AC activity, PDE3,4, GRK2 and PKA activity, as these factors directly impact cAMP production/degradation and ß1-AR (de) phosphorylation and are therefore predicted to comprise the most effective pharmaceutical targets in diseases affecting cardiac ß1-adrenergic signaling.


Assuntos
Adrenérgicos , Miócitos Cardíacos , AMP Cíclico , Humanos , Receptores Adrenérgicos beta 1 , Transdução de Sinais
7.
Neuroscience ; 401: 21-34, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30641115

RESUMO

Neuronal networks can produce stable oscillations and synchrony that are under tight control yet flexible enough to rapidly switch between dynamical states. The pacemaker nucleus in the weakly electric fish comprises a network of electrically coupled neurons that fire synchronously at high frequency. This activity sets the timing for an oscillating electric organ discharge with the lowest cycle-to-cycle variability of all known biological oscillators. Despite this high temporal precision, pacemaker activity is behaviorally modulated on millisecond time-scales for the generation of electrocommunication signals. The network mechanisms that allow for this combination of stability and flexibility are not well understood. In this study, we use an in vitro pacemaker preparation from Apteronotus leptorhynchus to characterize the neural responses elicited by the synaptic inputs underlying electrocommunication. These responses involve a variable increase in firing frequency and a prominent desynchronization of neurons that recovers within 5 oscillation cycles. Using a previously developed computational model of the pacemaker network, we show that the frequency changes and rapid resynchronization observed experimentally are most easily explained when model neurons are interconnected more densely and with higher coupling strengths than suggested by published data. We suggest that the pacemaker network achieves both stability and flexibility by balancing coupling strength with interconnectivity and that variation in these network features may provide a substrate for species-specific evolution of electrocommunication signals.


Assuntos
Gimnotiformes/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Relógios Biológicos , Órgão Elétrico/fisiologia , Estimulação Elétrica , Vias Neurais/fisiologia
8.
SIAM J Appl Dyn Syst ; 18(3): 1643-1693, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33273894

RESUMO

Electrical coupling between neurons is broadly present across brain areas and is typically assumed to synchronize network activity. However, intrinsic properties of the coupled cells can complicate this simple picture. Many cell types with electrical coupling show a diversity of post-spike subthreshold fluctuations, often linked to subthreshold resonance, which are transmitted through electrical synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we explore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks of electrically coupled resonate-and-fire neurons, a hybrid neuron model with damped subthreshold oscillations and a range of post-spike voltage dynamics. We calculate the phase response curve using an extension of the adjoint method that accounts for the discontinuous post-spike reset rule. We find that both spikes and subthreshold fluctuations can jointly promote synchronization. The subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in voltage, or plateau potential. Additionally, we show that the geometry of trajectories approaching the spiking threshold causes a "reset-induced shear" effect that can oppose synchrony in the presence of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs.

9.
Biol Cybern ; 112(4): 305-321, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29569056

RESUMO

During forward swimming, crayfish and other long-tailed crustaceans rhythmically move four pairs of limbs called swimmerets to propel themselves through the water. This behavior is characterized by a particular stroke pattern in which the most posterior limb pair leads the rhythmic cycle and adjacent swimmerets paddle sequentially with a delay of roughly 25% of the period. The neural circuit underlying limb coordination consists of a chain of local modules, each of which controls a pair of limbs. All modules are directly coupled to one another, but the inter-module coupling strengths decrease with the distance of the connection. Prior modeling studies of the swimmeret neural circuit have included only the dominant nearest-neighbor coupling. Here, we investigate the potential modulatory role of long-range connections between modules. Numerical simulations and analytical arguments show that these connections cause decreases in the phase-differences between neighboring modules. Combined with previous results from a computational fluid dynamics model, we posit that this phenomenon might ensure that the resultant limb coordination lies within a range where propulsion is optimal. To further assess the effects of long-range coupling, we modify the model to reflect an experimental preparation where synaptic transmission from a middle module is blocked, and we generate predictions for the phase-locking properties in this system.


Assuntos
Relógios Biológicos/fisiologia , Geradores de Padrão Central/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Natação/fisiologia , Animais , Astacoidea , Simulação por Computador , Modelos Biológicos
10.
J Math Biol ; 74(7): 1627-1656, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27738761

RESUMO

Many neuronal circuits driving coordinated locomotion are composed of chains of half-center oscillators (HCOs) of various lengths. The HCO is a common motif in central pattern generating circuits (CPGs); an HCO consists of two neurons, or two neuronal populations, connected by reciprocal inhibition. To maintain appropriate motor coordination for effective locomotion over a broad range of frequencies, chains of CPGs must produce approximately constant phase-differences in a robust manner. In this article, we study phase-locking in chains of nearest-neighbor coupled HCOs and examine how the circuit architecture can promote phase-constancy, i.e., inter-HCO phase-differences that are frequency-invariant. We use two models with different levels of abstraction: (1) a conductance-based model in which each neuron is modeled by the Morris-Lecar equations (the ML-HCO model); and (2) a coupled phase model in which the state of each HCO is captured by its phase (the phase-HCO model). We show that one of four phase-waves with inter-HCO phase-differences at approximately 0, 25, 50 or 75 % arises robustly as a result of the inter-HCO connection topology, and its robust existence is not affected by the number of HCOs in the chain, the difference in strength between the ascending and descending nearest-neighbor connections, or the number of nearest-neighbor connections. Our results show that the internal anti-phase structure of the HCO and an appropriate inter-HCO connection topology together can provide a mechanism for robust (i.e., frequency-independent) limb coordination in segmented animals, such as the 50 % interlimb phase-differences in the tripod gate of stick insects and cockroaches, and the 25 % interlimb phase-differences in crayfish and other long-tailed crustaceans during forward swimming.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Animais , Locomoção/fisiologia , Natação/fisiologia
11.
PLoS Comput Biol ; 12(7): e1005005, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27409243

RESUMO

Subcellular compartmentation of the ubiquitous second messenger cAMP has been widely proposed as a mechanism to explain unique receptor-dependent functional responses. How exactly compartmentation is achieved, however, has remained a mystery for more than 40 years. In this study, we developed computational and mathematical models to represent a subcellular sarcomeric space in a cardiac myocyte with varying detail. We then used these models to predict the contributions of various mechanisms that establish subcellular cAMP microdomains. We used the models to test the hypothesis that phosphodiesterases act as functional barriers to diffusion, creating discrete cAMP signaling domains. We also used the models to predict the effect of a range of experimentally measured diffusion rates on cAMP compartmentation. Finally, we modeled the anatomical structures in a cardiac myocyte diad, to predict the effects of anatomical diffusion barriers on cAMP compartmentation. When we incorporated experimentally informed model parameters to reconstruct an in silico subcellular sarcomeric space with spatially distinct cAMP production sites linked to caveloar domains, the models predict that under realistic conditions phosphodiesterases alone were insufficient to generate significant cAMP gradients. This prediction persisted even when combined with slow cAMP diffusion. When we additionally considered the effects of anatomic barriers to diffusion that are expected in the cardiac myocyte dyadic space, cAMP compartmentation did occur, but only when diffusion was slow. Our model simulations suggest that additional mechanisms likely contribute to cAMP gradients occurring in submicroscopic domains. The difference between the physiological and pathological effects resulting from the production of cAMP may be a function of appropriate compartmentation of cAMP signaling. Therefore, understanding the contribution of factors that are responsible for coordinating the spatial and temporal distribution of cAMP at the subcellular level could be important for developing new strategies for the prevention or treatment of unfavorable responses associated with different disease states.


Assuntos
Simulação por Computador , AMP Cíclico/química , AMP Cíclico/metabolismo , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Biologia Computacional , Camundongos , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo
12.
PLoS One ; 11(3): e0150761, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963710

RESUMO

Since the first Hodgkin and Huxley ion channel model was described in the 1950s, there has been an explosion in mathematical models to describe ion channel function. As experimental data has become richer, models have concomitantly been improved to better represent ion channel kinetic processes, although these improvements have generally resulted in more model complexity and an increase in the number of parameters necessary to populate the models. Models have also been developed to explicitly model drug interactions with ion channels. Recent models of drug-channel interactions account for the discrete kinetics of drug interaction with distinct ion channel state conformations, as it has become clear that such interactions underlie complex emergent kinetics such as use-dependent block. Here, we describe an approach for developing a model for ion channel drug interactions. The method describes the process of extracting rate constants from experimental electrophysiological function data to use as initial conditions for the model parameters. We then describe implementation of a parameter optimization method to refine the model rate constants describing ion channel drug kinetics. The algorithm takes advantage of readily available parallel computing tools to speed up the optimization. Finally, we describe some potential applications of the platform including the potential for gaining fundamental mechanistic insights into ion channel function and applications to in silico drug screening and development.


Assuntos
Simulação por Computador , Canais Iônicos/química , Modelos Moleculares , Preparações Farmacêuticas/química , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
13.
Proc Natl Acad Sci U S A ; 111(38): 13840-5, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201976

RESUMO

A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior.


Assuntos
Crustáceos/fisiologia , Membro Posterior/fisiologia , Modelos Biológicos , Natação/fisiologia , Animais , Crustáceos/anatomia & histologia , Membro Posterior/anatomia & histologia
14.
J Math Biol ; 68(1-2): 303-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23263302

RESUMO

We examine the effects of dendritic filtering on the existence, stability, and robustness of phase-locked states to heterogeneity and noise in a pair of electrically coupled ball-and-stick neurons with passive dendrites. We use the theory of weakly coupled oscillators and analytically derived filtering properties of the dendritic coupling to systematically explore how the electrotonic length and diameter of dendrites can alter phase-locking. In the case of a fixed value of the coupling conductance (gc) taken from the literature, we find that repeated exchanges in stability between the synchronous and anti-phase states can occur as the electrical coupling becomes more distally located on the dendrites. However, the robustness of the phase-locked states in this case decreases rapidly towards zero as the distance between the electrical coupling and the somata increases. Published estimates of gc are calculated from the experimentally measured coupling coefficient (CC) based on a single-compartment description of a neuron, and therefore may be severe underestimates of gc. With this in mind, we re-examine the stability and robustness of phase-locking using a fixed value of CC, which imposes a limit on the maximum distance the electrical coupling can be located away from the somata. In this case, although the phase-locked states remain robust over the entire range of possible coupling locations, no exchanges in stability with changing coupling position are observed except for a single exchange that occurs in the case of a high somatic firing frequency and a large dendritic radius. Thus, our analysis suggests that multiple exchanges in stability with changing coupling location are unlikely to be observed in real neural systems.


Assuntos
Dendritos/fisiologia , Sinapses Elétricas/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Humanos , Análise Numérica Assistida por Computador
15.
J Comput Neurosci ; 35(1): 55-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23456595

RESUMO

We examine the phase response properties of half-center oscillators (HCOs) that are modeled by a pair of Morris-Lecar-type neurons connected by strong fast inhibitory synapses. We find that the two basic mechanisms for half-center oscillations, "release" and "escape", give rise to strikingly different phase response curves (PRCs). Release-type HCOs are most sensitive to perturbations delivered to cells at times when they are about to transition from the active to the suppressed state, and PRCs are dominated by a large negative peak (phase delays) at corresponding phases. On the other hand, escape-type HCOs are most sensitive to perturbations delivered to cells at times when they are about to transition from the suppressed to the active state, and PRCs are dominated by a large positive peak (phase advances) at corresponding phases. By analyzing the phase space structure of Morris-Lecar-type HCO models with fast synaptic dynamics, we identify the dynamical mechanisms underlying the shapes of the PRCs. To demonstrate the significance of the different shapes of the PRCs for the release-type and escape-type HCOs, we link the shapes of the PRCs to the different frequency modulation properties of release-type and escape-type HCOs, and we show that the different shapes of the PRCs for the release-type and escape-type HCOs can lead to fundamentally different phase-locking dynamics.


Assuntos
Relógios Biológicos/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Simulação por Computador , Inibição Neural/fisiologia , Dinâmica não Linear , Sinapses/fisiologia
16.
J Grad Med Educ ; 5(3): 468-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24404312

RESUMO

BACKGROUND: Education for all physicians should include specialty-specific geriatrics-related and chronic disease-related topics. OBJECTIVE: We describe the development, implementation, and evaluation of a chronic disease/geriatric medicine curriculum designed to teach Accreditation Council for Graduate Medical Education core competencies and geriatric medicine competencies to residents by using longitudinal encounters with a standardized dementia patient and her caregiver daughter. INTERVENTION: Over 3 half-day sessions, the unfolding standardized patient (SP) case portrays the progressive course of dementia and simulates a 10-year longitudinal clinical experience between residents and a patient with dementia and her daughter. A total of 134 residents participated in the University of Cincinnati-based curriculum during 2007-2010, 72% of whom were from internal medicine (79) or family medicine (17) residency programs. Seventy-five percent of participants (100) said they intended to provide primary care to older adults in future practice, yet 54% (73) had little or no experience providing medical care to older adults with dementia. RESULTS: Significant improvements in resident proficiency were observed for all self-reported skill items. SPs' evaluations revealed that residents' use of patient-centered language and professionalism significantly improved over the 3 weekly visits. Nearly all participants agreed that the experience enhanced clinical competency in the care of older adults and rated the program as "excellent" or "above average" compared to other learning activities. CONCLUSIONS: Residents found this SP-based curriculum using a longitudinal dementia case realistic and valuable. Residents improved in both self-perceived knowledge of dementia and the use of patient-centered language and professionalism.

17.
J Physiol ; 590(10): 2501-17, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22393249

RESUMO

In the rd1 mouse model for retinal degeneration, the loss of photoreceptors results in oscillatory activity (∼10­20 Hz) within the remnant electrically coupled network of retinal ON cone bipolar and AII amacrine cells. We tested the role of hyperpolarization-activated currents (I(h)), voltage-gated Na(+) channels and gap junctions in mediating such oscillatory activity. Blocking I(h) (1 mm Cs(+)) hyperpolarized the network and augmented activity, while antagonizing voltage-dependent Na(+) channels (1 µm TTX) abolished oscillatory activity in the AII amacrine-ON cone bipolar cell network. Voltage-gated Na(+) channels were only observed in AII amacrine cells, implicating these cells as major drivers of activity. Pharmacologically uncoupling the network (200 µm meclofenamic acid (MFA)) blocked oscillations in all cells indicating that Na(+) channels exert their influence over multiple cell types within the network. In wt retina, occluding photoreceptor inputs to bipolar cells (10 µm NBQX and 50 µm l-AP4) resulted in a mild (∼10 mV) hyperpolarization and the induction of oscillatory activity within the AII amacrine-ON cone bipolar cell network. These oscillations had similar properties to those observed in rd1 retina, suggesting that no major degeneration-induced network rewiring is required to trigger spontaneous oscillations. Finally, we constructed a simplified computational model that exhibited Na(+) channel-dependent network oscillations. In this model, mild heterogeneities in channel densities between individual neurons reproduced our experimental findings. These results indicate that TTX-sensitive Na(+) channels in AII amacrine cells trigger degeneration-induced network oscillations, which provide a persistent synaptic drive to downstream remnant neurons, thus appearing to replace photoreceptors as the principal drivers of retinal activity.


Assuntos
Células Amácrinas/fisiologia , Células Bipolares da Retina/fisiologia , Canais de Sódio/fisiologia , Animais , Junções Comunicantes/fisiologia , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Células Ganglionares da Retina/fisiologia
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 031906, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517524

RESUMO

We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.


Assuntos
Dendritos/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Biofísica/métodos , Simulação por Computador , Análise de Fourier , Humanos , Modelos Biológicos , Modelos Neurológicos , Modelos Estatísticos , Modelos Teóricos , Neurônios/metabolismo , Oscilometria/métodos
19.
Nat Neurosci ; 10(4): 462-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17334362

RESUMO

The thalamus provides fundamental input to the neocortex. This input activates inhibitory interneurons more strongly than excitatory neurons, triggering powerful feedforward inhibition. We studied the mechanisms of this selective neuronal activation using a mouse somatosensory thalamocortical preparation. Notably, the greater responsiveness of inhibitory interneurons was not caused by their distinctive intrinsic properties but was instead produced by synaptic mechanisms. Axons from the thalamus made stronger and more frequent excitatory connections onto inhibitory interneurons than onto excitatory cells. Furthermore, circuit dynamics allowed feedforward inhibition to suppress responses in excitatory cells more effectively than in interneurons. Thalamocortical excitatory currents rose quickly in interneurons, allowing them to fire action potentials before significant feedforward inhibition emerged. In contrast, thalamocortical excitatory currents rose slowly in excitatory cells, overlapping with feedforward inhibitory currents that suppress action potentials. These results demonstrate the importance of selective synaptic targeting and precise timing in the initial stages of neocortical processing.


Assuntos
Neocórtex/citologia , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Animais Recém-Nascidos , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Proteínas de Fluorescência Verde/biossíntese , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Técnicas de Patch-Clamp
20.
J Neurosci ; 27(8): 2058-73, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17314301

RESUMO

We performed a systematic analysis of phase locking in pairs of electrically coupled neocortical fast-spiking (FS) and low-threshold-spiking (LTS) interneurons and in a conductance-based model of a pair of FS cells. Phase-response curves (PRCs) were obtained for real interneurons and the model cells. We used PRCs and the theory of weakly coupled oscillators to make predictions about phase-locking characteristics of cell pairs. Phase locking and the robustness of phase-locked states to differences in intrinsic frequencies of cells were directly examined by driving interneuron pairs through a wide range of firing frequencies. Calculations using PRCs accurately predicted that electrical coupling robustly synchronized the firing of interneurons over all frequencies studied (FS, approximately 25-80 Hz; LTS, approximately 10-30 Hz). The synchronizing ability of electrical coupling and the robustness of the phase-locked states were directly dependent on the strength of coupling but not on firing frequency. The FS cell model also predicted the existence of stable antiphase firing at frequencies below approximately 30 Hz, but no evidence for stable antiphase firing was found using the experimentally determined PRCs or in direct measures of phase locking in pairs of interneurons. Despite significant differences in biophysical properties of FS and LTS cells, their phase-locking behavior was remarkably similar. The wide spikes and shallow action potential afterhyperpolarizations of interneurons, compared with the model, prohibited antiphase behavior. Electrical coupling between cortical interneurons of the same type maintained robust synchronous firing of cell pairs for up to approximately 10% heterogeneity in their intrinsic frequencies.


Assuntos
Interneurônios/fisiologia , Neocórtex/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação , Animais , Limiar Diferencial , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos , Modelos Neurológicos , Neocórtex/citologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...